Kepler-Problem in der Zeit: Wie bewegen sich zwei gravitativ angezogene Teilchen? [Duplikat]

Zwei Teilchen mit Anfangspositionen und Geschwindigkeiten R 1 , v 1 Und R 2 , v 2 interagieren nach dem Abstandsquadratgesetz (mit G = 1), so dass

D 2 R 1 D T 2 = M 2 ( R 1 R 2 ) | R 1 R 2 | 3
D 2 R 2 D T 2 = M 1 ( R 2 R 1 ) | R 1 R 2 | 3

(das inverse quadratische Gesetz entlang der Trennlinie). Wie lautet die vollständige Lösung dieser Differentialgleichungen? Wie ist die Position der beiden Objekte als Funktion der Zeit?

Nachdem ich viel auf Wikipedia gelesen habe, bin ich zur Definition von Massenschwerpunkt und relativen Koordinaten gekommen:

R ( T )   =   M 1 R 1 + M 2 R 2 M 1 + M 2

R ¨ ( T ) R ( T ) 2   =   ( M 1 + M 2 ) G

Wo R ist der Schwerpunkt, und R ist die Verschiebung zwischen den Partikeln ... Ist das richtig? Wie gehe ich vor, um die Differentialgleichung zu lösen?

wahrscheinlich verwandt: physical.stackexchange.com/q/14700
Wiedereröffnung von Rons Argumenten von physical.stackexchange.com/q/28527

Antworten (1)

Lehrbuchlösung

Als erstes müssen der Schwerpunkt und die relativen Koordinaten definiert werden:

R ( T ) = M 1 R 1 + M 2 R 2 M 1 + M 2

R ( T ) = R 2 R 1

Sie kehren dies um, um zu finden

R 1 = R M 2 M R
R 2 = R + M 1 M R

Die Bewegungsgleichung für R ist trivial, da der Schwerpunkt ein Erhaltungssatz ist:

D 2 R D T 2 = 0

und es wird gelöst durch

R ( T ) = v 0 T + R 0
Wo v 0 Und R 0 sind die anfängliche Schwerpunktsgeschwindigkeit bzw. -position (die aus den gegebenen Anfangsbedingungen berechnet werden).

Die nichttriviale Gleichung gilt für die relative Koordinate:

M D 2 R D T 2 = M 1 M 2 R | R | 3
wobei m die reduzierte Masse ist: 1 M = 1 M 1 + 1 M 2 .

Oder:

D 2 R D T 2 = M R | R | 3

Wo M = M 1 + M 2 ist die Gesamtmasse.

The problem is reduced to solving the Kepler motion in a 1/r potential. From now on, I will rescale time to make the mass parameter in the r equation 1.

You can choose the x axis to lie along the initial r, and the y-axis to lie along the component of the initial r ˙ perpendicular to the initial r. Another way of saying this is that you rotate the coordinates to make the angular momentum vector r × p where p = m r ˙ to lie along the z-axis. This rotation reduces the problem to a plane, and the rotation matrix columns are given by the normalized initial r (now along the x-axis), the component of the initial velocity perpendicular to r, normalized (along the y-axis), and normalized L along the z-axis.

You then use units to set the total over reduced mass to 1, and use polar coordinates in the x-y plane of the motion, and note that the angular momentum is constant:

r 2 d θ d t = L

This tells you that equal areas are swept out by the r-vector in equal times. The equation of motion for r(t) (no longer a vector, now a scalar radial coordinate) is:

d 2 r d t 2 = L 2 r 3 1 r 2

Then you change time out for θ , expressing everything in terms of r ( θ ) , which you can do using the equal area law, whenever the anguar momentum is nonzero (if the initial angular momentum is zero, or very close to zero, this is a one-dimensional two-body problem which can be solved directly by more elementary means). The equation of motion for r ( θ ) simplifies when you make a coordinate transformation to u = 1 r :

d 2 u d θ 2 = C u

Where C is some unimportant constant, and this is solved by

u ( θ ) = 1 A ( 1 + a cos ( θ θ 0 ) )

Where A is the semi-major axis of the ellipse (if the orbit is an ellipse), θ 0 determines the orientation in the x-y plane, and a is the eccentricity of the ellipse (if a<1), or determines the angle of the hyperbola (if a&gt;1) or tells you the orbit is a parabola (a=1).</p> <p>the only result you need is that</p> <p><span class="MathJax_Preview" style="color: inherit;"></span></p> <div class="MathJax_Display" style="text-align: center;"> <span class="MathJax" id="MathJax-Element-42-Frame" tabindex="0" style="text-align: center; position: relative;" data-mathml="<math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;block&quot;><mi>r</mi><mo stretchy=&quot;false&quot;>(</mo><mi>&amp;#x03B8;</mi><mo stretchy=&quot;false&quot;>)</mo><mo>=</mo><mrow class=&quot;MJX-TeXAtom-ORD&quot;><mfrac><mi>A</mi><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mi>cos</mi><mo>&amp;#x2061;</mo><mo stretchy=&quot;false&quot;>(</mo><mi>&amp;#x03B8;</mi><mo>&amp;#x2212;</mo><msub><mi>&amp;#x03B8;</mi><mn>0</mn></msub><mo stretchy=&quot;false&quot;>)</mo></mrow></mfrac></mrow></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-577" style="width: 11.072em; display: inline-block;"><span style="display: inline-block; position: relative; width: 10.44em; height: 0px; font-size: 106%;"><span style="position: absolute; clip: rect(0.557em, 1010.44em, 3.324em, -1000em); top: -2.138em; left: 0em;"><span class="mrow" id="MathJax-Span-578"><span class="mi" id="MathJax-Span-579" style="font-family: MathJax_Math-italic;">r</span><span class="mo" id="MathJax-Span-580" style="font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-581" style="font-family: MathJax_Math-italic;">θ</span><span class="mo" id="MathJax-Span-582" style="font-family: MathJax_Main;">)</span><span class="mo" id="MathJax-Span-583" style="font-family: MathJax_Main; padding-left: 0.278em;">=</span><span class="texatom" id="MathJax-Span-584" style="padding-left: 0.278em;"><span class="mrow" id="MathJax-Span-585"><span class="mfrac" id="MathJax-Span-586"><span style="display: inline-block; position: relative; width: 7.243em; height: 0px; margin-right: 0.12em; margin-left: 0.12em;"><span style="position: absolute; clip: rect(3.12em, 1000.73em, 4.214em, -1000em); top: -4.702em; left: 50%; margin-left: -0.375em;"><span class="mi" id="MathJax-Span-587" style="font-family: MathJax_Math-italic;">A</span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; clip: rect(3.086em, 1007.03em, 4.464em, -1000em); top: -3.278em; left: 50%; margin-left: -3.561em;"><span class="mrow" id="MathJax-Span-588"><span class="mn" id="MathJax-Span-589" style="font-family: MathJax_Main;">1</span><span class="mo" id="MathJax-Span-590" style="font-family: MathJax_Main; padding-left: 0.222em;">+</span><span class="mi" id="MathJax-Span-591" style="font-family: MathJax_Math-italic; padding-left: 0.222em;">a</span><span class="mi" id="MathJax-Span-592" style="font-family: MathJax_Main; padding-left: 0.167em;">cos</span><span class="mo" id="MathJax-Span-593"></span><span class="mo" id="MathJax-Span-594" style="font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-595" style="font-family: MathJax_Math-italic;">θ</span><span class="mo" id="MathJax-Span-596" style="font-family: MathJax_Main; padding-left: 0.222em;">−</span><span class="msubsup" id="MathJax-Span-597" style="padding-left: 0.222em;"><span style="display: inline-block; position: relative; width: 0.898em; height: 0px;"><span style="position: absolute; clip: rect(3.131em, 1000.46em, 4.224em, -1000em); top: -4.025em; left: 0em;"><span class="mi" id="MathJax-Span-598" style="font-family: MathJax_Math-italic;">θ</span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; top: -3.875em; left: 0.469em;"><span class="mn" id="MathJax-Span-599" style="font-size: 70.7%; font-family: MathJax_Main;">0</span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span></span></span><span class="mo" id="MathJax-Span-600" style="font-family: MathJax_Main;">)</span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; clip: rect(0.802em, 1007.24em, 1.258em, -1000em); top: -1.289em; left: 0em;"><span style="display: inline-block; overflow: hidden; vertical-align: 0em; border-top: 1.3px solid; width: 7.243em; height: 0px;"></span><span style="display: inline-block; width: 0px; height: 1.069em;"></span></span></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.138em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -1.124em; border-left: 0px solid; width: 0px; height: 2.666em;"></span></span></nobr><span class="MJX_Assistive_MathML MJX_Assistive_MathML_Block" role="presentation"> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <mi> r </mi><mo stretchy="false"> ( </mo><mi> θ </mi><mo stretchy="false"> ) </mo><mo> = </mo><mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> A </mi> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> a </mi> <mi> cos </mi> <mo> ⁡ </mo> <mo stretchy="false"> ( </mo> <mi> θ </mi> <mo> − </mo> <msub> <mi> θ </mi> <mn> 0 </mn> </msub> <mo stretchy="false"> ) </mo> </mrow> </mfrac> </mrow> </math></span></span> </div> <script type="math/tex; mode=display" id="MathJax-Element-42"> r(\theta) = {A\over 1+ a\cos(\theta-\theta_0)}

This gives you the solution of r as a function of θ , which gives the shape of the orbit. This is where textbooks stop.

Finding θ as a function of t

But you then want the solution for θ as a function of time, to get the r and θ as functions of time. This is determined from the area law, conceptually:

r 2 d θ d t = L

d θ ( 1 + a cos ( θ θ 0 ) ) 2 = L A 2 d t

and integrating this from time 0 to time t, tells you in principle what θ ( t ) is. The result can be written as:

F ( a , θ ) = F ( a , θ 0 ) + L A 2 t

Where F ( a , θ ) is the special function that gives you the area of a conic section of parameter a, in a wedge from the focus where one half-line is along the major axis, and the other half-line makes an angle θ with the first. This special function is not expressible in terms of elementary functions.

This function is defined by the integral above, and you can calculate it numerically using any numerical integration method. Finding this function, and inverting it, is the only difficult part of this problem. There are three limits which are necessary for perturbations:

  • for a=0, F ( 0 , θ ) = θ
  • for a=1, F ( 1 , θ ) = y 4 + y 3 12 where y = r sin θ = sin ( θ ) 1 + cos ( θ )
  • for a = , F ( a , θ ) 1 a tan ( θ )

Each of these are elementary degenerations: the first is the circle, the second is the parabola, and the third is a straight line. The important thing is that each of these degenerations gives you x(t) and y(t) which are simple, and further, you can perturb around each of these three limits in a nice way. In the following, the parameter t is rescaled to absorb L A 2

  • circle: x ( t ) = cos ( t ) y ( t ) = sin ( t )
  • parabola: y ( t ) = ( 1 + 36 t 2 + 6 t ) 1 3 ( 1 + 36 t 2 6 t ) 1 3 x ( t ) = 1 2 y 2 2
  • line: x ( t ) = 1 a , y ( t ) = t

The line and circle are obvious, the parabola is found by inverting the cubic for y as a function of t using the cubic equation.

Near the circle, time is periodic with the orbital period, which is the area inside the ellipse a A 2 divided by the area sweep-rate L / 2 . So hat man einmal Windungsfunktion von Kreis zu Kreis, die man immer als Fourier-Reihe schreiben kann mit einem linearen Term, der aus der Potenzreihe des Integranden in einem Term für Term integriert wird. In der Nähe der geradlinigen Hyperbel können Sie in ähnlicher Weise in einer Reihe stören, und die einzige interessante Entartung ist die Parabel. In der Nähe der Parabel ist die Störungstheorie etwas komplizierter.