Wie analysiert man eine ideale Diodenschaltung mit sinusförmigen Quellen und Speicherelementen (Induktoren und Kondensatoren)?

In meinem ersten Elektronikunterricht haben wir gelernt, wie man eine Schaltung mit Wechselstromquellen und idealen Dioden, aber nur mit Widerstandselementen analysiert. In solchen Fällen reagieren die Ströme und Spannungen sofort auf Eingaben (ich meine, es gibt keine Verzögerung). Was wir taten, war, dass wir während der positiven Halbwelle der Wechselspannungsquelle davon ausgingen, dass der Strom von seinem positiven Anschluss ausgeht, und uns von dort aus vorstellten, wie sich der Strom in jedem Knoten aufteilen würde, wenn er durch die Zweige wandert. Ich denke, das ist die übliche Art und Weise gelehrt. Sobald jedoch ein kapazitives oder induktives Element hinzugefügt wird, können Ströme und Spannungen nacheilen und es tritt ein Einschwingverhalten auf. Daher tritt in der positiven Halbwelle der Wechselspannungsquelle der Strom nicht notwendigerweise zu allen Zeitpunkten während der positiven Halbwelle aus ihrem positiven Anschluss aus. Der ich - v Eigenschaften einer idealen Spannungsquelle ist v = v S ( T ) Und ich = irgendein Wert .

Meine Frage ist, wie können wir eine Schaltung mit idealen Dioden, Wechselstromquellen, Widerstandselementen und Energiespeicherelementen ( L , C ) analysieren / lösen, um den Ausdruck für eine Spannung oder einen Strom analytisch zu erhalten? Das wurde mir nicht beigebracht. Mein Ziel ist es, einen genauen Ausdruck für eine Spannung oder einen Strom zu erhalten. Obwohl ich weiß, dass die Verwendung der idealen Diode tatsächlich einen ungefähren Wert ergibt, bitte ich um dieses Modell, um die Berechnungen zu vereinfachen. Betrachten Sie als Beispiel die folgende Schaltung, in der jede Diode ideal ist: R = 1   Ω , L = 1  H , Und v S ( T ) = 12 Sünde 2 π T  v ( F = 1  Hertz ) und die Induktivität zunächst entladen. Nehmen wir an, wir wollen nach dem Strom der Induktivität auflösen.

Schaltplan

Der Strom durch den Induktor, der die Referenzrichtung von Knoten 2 bis 4 wählt, und der Strom durch D1 laut LTspice wie folgt.

Schaltungslösung mit LTspice

Vorgeschlagene Lösung

Was ich überlege, ist folgendes. In BJT-Schaltungen gehen wir zunächst davon aus, dass sich der BJT im aktiven Bereich befindet, um seinen Betriebsbereich zu finden. Daher ersetzen wir ihn durch sein DC-Ersatzschaltbild im aktiven Bereich, lösen dann die Schaltung und vergleichen, ob die Annahme richtig ist. Wenn es richtig ist, ist die Analyse abgeschlossen; Wenn es falsch ist, ersetzen wir es durch das DC-Ersatzschaltbild im Sättigungsbereich oder im Sperrbereich. Hier erkläre ich ein bisschen mehr über diese Methode.

Ich nehme an, dass wir für Diodenschaltungen auch eine Annahme treffen und beweisen können, ob sie richtig oder falsch ist. Diese Antwort beschreibt das Verfahren, das ich im Sinn habe. Da die Quelle jedoch Wechselstrom und nicht Gleichstrom ist, denke ich, dass die Lösung, die wir erhalten, nur für einen halben Zyklus gültig sein wird. Daher können wir nicht die vollständige Antwort für alle erhalten T , aber nur bis zu dem von uns analysierten Zyklus. Ist das korrekt?

Zeigen Sie die BJT-Schaltung, von der Sie sprechen.
Hallo Andy. Die Schaltung, die ich lösen möchte, ist oben gezeigt. Als ich den BJT erwähnte, meinte ich nur die Art und Weise, wie ich normalerweise Schaltungen löse, die BJTs enthalten.

Antworten (1)

Aus diesem Grund wurden Simulatoren entwickelt, denn selbst mit der Diode allein wird es kompliziert.

Betrachten Sie den Fall einer Diode als Halbwellengleichrichter, der eine RL-Last antreibt (dh Ihr Bild ohne D2). Für eine mathematische Analyse sollte die Diode ideal sein. Dies würde bedeuten, dass für die 1. Hälfte der Periode die Diode kurzgeschlossen und für die 2. Hälfte der Stromkreis getrennt wird. Da sich dort jedoch ein reaktives Element befindet, stoppt der Strom nicht, wenn die Eingangsspannung auf Null abfallen würde. Dann fließt der Induktorstrom tendenziell in die andere Richtung und spannt die Diode in Vorwärtsrichtung vor.

Aber zuerst analysieren wir die Schaltung ohne die Diode: eine einfache Serie RL. Die Gleichungen wären:

L D ich ( T ) D T + R ich ( T ) = 0

mit der Lösung:

(1) ich ( T ) = ich ( 0 ) e L R T

Zu lösen ich ( T ) :

Z = R 2 + ω 2 L 2 L D ich ( T ) D T + R ich ( T ) = v Sünde ( ω T ) (2) ich S T e A D j ( T ) = v Z Sünde ( ω T ϕ ) ϕ = arctan ω L R ich ( 0 ) = v Z Sünde ( ϕ )

So wäre der Ausdruck des Gesamtstroms ( 1 ) Plus ( 2 ) :

(3) ich ( T ) = v Z [ Sünde ( ω T ϕ ) + Sünde ϕ e R L T ]

Wenn sie den berechneten Strom nebeneinander neben einer SPICE-Simulation darstellen, würden sie zustimmen:

Komp

Wenn die Diode in der Schaltung berücksichtigt werden soll, gilt die obige Gleichung nur für die erste Hälfte der Periode plus den Teil, in dem die Diode durch die induzierte Spannung in Vorwärtsrichtung vorgespannt ist. An diesem Punkt ist der Strom Null, bis die 2. Periode beginnt, wenn der Zyklus fortgesetzt wird. Unten sind die Wellenformen für das einfache RL und für das RL+D dargestellt:

Tagfahrlicht

Bis jetzt sieht es also so aus, als könnten die Dinge selbst mit der Diode ziemlich einfach analytisch gelöst werden. Aber wenn Sie das aus Ihrem Bild einfügen, D2wird die Sache komplizierter. Bisher gab es nur einen Teil, wenn die Diode eingeschaltet war, und wenn sie ausgeschaltet war, und dies waren zwei Zustände, die getrennt und "zusammengefügt" werden konnten, um die gewünschte Wellenform zu ergeben. Bei zwei Dioden gibt es nun 4 Zustände, die durch D1Ein / Aus und D2Ein / Aus gebildet werden. In jedem von ihnen passieren verschiedene Dinge, die jeweils das nächste beeinflussen:

problematisch

  • in der 1. Hälfte der Periode steigt der Strom entsprechend an ( 3 ) .
  • dann spannt die induzierte Spannung in Vorwärtsrichtung vor D2, nicht D1, was bis zur nächsten Periode leitet, aber es beginnt damit, dort fortzufahren, wo D1es endete.
  • D1beginnt erneut zu leiten, aber dieses Mal gibt es keine Null-Anfangsbedingungen mehr, was bedeutet, dass die Wellenformen für die beiden vorherigen Zustände die Werte der Anfangsbedingungen für jeden des nächsten Teils bestimmen.
  • usw

Was bleibt, ist die Übergangslösung, ( 1 ) , was am langsam ansteigenden Mittelwert der Summe der beiden Ströme sichtbar ist, und der Lösung für den Strom durch D1( I(R1), grün), aber nur für die erste Hälfte des Zeitraums -- es ist zu erkennen, dass die Wellenformen in übereinstimmen diese Zeitspanne.

Der Strom durch D2kann auch abgeleitet werden (ähnlich wie ( 3 ) ) und berechnet, aber wie erwähnt ändern sich die Anfangsbedingungen immer, bis der stationäre Zustand erreicht ist. Jede nächste Halbperiode hat also unterschiedliche Lösungen mit Anfangsbedingungen, die auf den vorherigen Halbperioden basieren.

Selbst wenn ich an dieser Stelle die andere Formel ableiten könnte (auf die gleiche Weise, aber die Spannung hat eine Verschiebung), würde ich es lieber nicht tun, weil ich hoffe, dass Sie sehen können, warum die Simulatoren an dieser Stelle verwendet werden. Und wenn Sie denken, dass der Simulator die Schaltung in Formeln zerlegt, muss ich Sie enttäuschen, weil er nichts anderes tut, als eine Matrix aus Spannungen, Strömen, Widerständen, Leitwerten, was Sie haben (Simulator-spezifisch), zu erstellen und dann löst dies numerisch . Es hat keine Ahnung von komplexen Operatoren, Phasoren und dergleichen. Es knirscht einfach Zahlen, bis eine Konvergenz erreicht ist, an welcher Stelle es das Ergebnis für zufriedenstellend erklärt.

Wenn Sie immer noch denken, dass es sich lohnt, und Sie sich für Transistoren entscheiden möchten, ... viel Glück. :-)
Danke, Mann! Ich habe tatsächlich meine vorgeschlagene Lösung ausprobiert und es hat funktioniert. Was Sie erklärt haben, ist im Wesentlichen dasselbe. Ja, ich bemerkte, dass es langweilig wurde; Ich wollte nur wissen, wie man eine solche Schaltung ohne Simulator löst. Und ja, ich habe gesehen, dass LTspice sagt, dass es Newtons numerische Methode verwendet, um Schaltkreise zu lösen.
@AlejandroNava Es gibt eine Abkürzung zum Berechnen der Anfangsbedingungen für jede Halbperiode, da beide Ströme durch Dioden derselben Differenzialgleichungslösung gehorchen, A*exp(-R/L*t)aber die Schlussfolgerung bleibt bestehen. Wenn Sie der Meinung sind, dass dies Ihre Frage beantwortet hat, markieren Sie sie (das Häkchen), damit andere, die in Zukunft nach ähnlichen Fragen suchen, wissen, dass diese Frage eine akzeptierte Antwort hat, der sie folgen können.
Richtig, ich wollte es als akzeptierte Antwort markieren. Aber ich habe gehört, dass es gut ist, mindestens einen Tag zu warten, damit andere es vielleicht auch beantworten. Aber Ihre Antwort ist vollständig, also brauchen Sie keine weitere Antwort.
@AlejandroNava Sie haben Recht, etwas Zeit verstreichen zu lassen, man weiß nie, ob jemand mit einer besseren Antwort kommt. Deshalb habe ich nicht "jetzt markieren" gesagt, sondern nur erwähnt, dass Sie dies tun sollten, und dies gilt für jede andere Antwort.